Search results

1 – 10 of 61
Article
Publication date: 4 January 2016

Mehdi Jamei and H Ghafouri

The purpose of this paper is to present a novel sequential implicit discontinuous Galerkin (DG) method for two-phase incompressible flow in porous media. It is based on the…

Abstract

Purpose

The purpose of this paper is to present a novel sequential implicit discontinuous Galerkin (DG) method for two-phase incompressible flow in porous media. It is based on the wetting phase pressure-saturation formulation with Robin boundary condition (Klieber and Riviere, 2006) using H(div) velocity projection.

Design/methodology/approach

The local mass conservation and continuity of normal component of velocity across elements interfaces are enforced by a simple H(div) velocity projection in lowest order Raviart-Thomas (RT0) space. As further improvements, the authors use the weighted averages and the scaled penalties in spatial DG discretization. Moreover, the Chavent-Jaffre slope limiter, as a consistent non-oscillatory limiter, is used for saturation values to avoid the spurious oscillations.

Findings

The proposed model is verified by a pseudo 1D Buckley-Leverett problem in homogeneous media. Two homogeneous and heterogeneous quarter five-spot benchmark problems and a random permeable medium are used to show the accuracy of the method at capturing the sharp front and illustrate the impact of proposed improvements.

Research limitations/implications

The work illustrates incompressible two-phase flow behavior and the capillary pressure heterogeneity between different geological layers is assumed to be negligible.

Practical implications

The proposed model can efficiently be used for modeling of two-phase flow in secondary recovery of petroleum reservoirs and tracing the immiscible contamination in porous media.

Originality/value

The authors present an efficient sequential DG method for immiscible incompressible two-phase flow in porous media with improved performance for detection of sharp frontal interfaces and discontinuities.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

Mehdi Jamei and H Ghafouri

The purpose of this paper is to present an efficient improved version of Implicit Pressure-Explicit Saturation (IMPES) method for the solution of incompressible two-phase flow…

Abstract

Purpose

The purpose of this paper is to present an efficient improved version of Implicit Pressure-Explicit Saturation (IMPES) method for the solution of incompressible two-phase flow model based on the discontinuous Galerkin (DG) numerical scheme.

Design/methodology/approach

The governing equations, based on the wetting-phase pressure-saturation formulation, are discretized using various primal DG schemes. The authors use H(div) velocity reconstruction in Raviart-Thomas space (RT_0 and RT_1), the weighted average formulation, and the scaled penalties to improve the spatial discretization. It uses a new improved IMPES approach, by using the second-order explicit Total Variation Diminishing Runge-Kutta (TVD-RK) as temporal discretization of the saturation equation. The main purpose of this time stepping technique is to speed up computation without losing accuracy, thus to increase the efficiency of the method.

Findings

Utilizing pressure internal interpolation technique in the improved IMPES scheme can reduce CPU time. Combining the TVD property with a strong multi-dimensional slope limiter namely, modified Chavent-Jaffre leads to a non-oscillatory scheme even in coarse grids and highly heterogeneous porous media.

Research limitations/implications

The presented locally conservative scheme can be applied only in 2D incompressible two-phase flow modeling in non-deformable porous media. In addition, the capillary pressure discontinuity between two adjacent rock types assumed to be negligible.

Practical implications

The proposed numerical scheme can be efficiently used to model the incompressible two-phase flow in secondary recovery of petroleum reservoirs and tracing immiscible contamination in aquifers.

Originality/value

The paper describes a novel version of the DG two-phase flow which illustrates the effects of improvements in special discretization. Also the new improved IMPES approach used reduces the computation time. The non-oscillatory scheme is an efficient algorithm as it maintains accuracy and saves computation time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2018

Mehdi Mosharaf-Dehkordi and Hamid Reza Ghafouri

The purpose of this paper is to present detailed algorithms for simulation of individual and group control of production wells in hydrocarbon reservoirs which are implemented in a…

Abstract

Purpose

The purpose of this paper is to present detailed algorithms for simulation of individual and group control of production wells in hydrocarbon reservoirs which are implemented in a finite volume-based reservoir simulator.

Design/methodology/approach

The algorithm for individual control is described for the multi-lateral multi-connection ones based on the multi-segment model considering cross-flow. Moreover, a general group control algorithm is proposed which can be coupled with any well model that can handle a constraint and returns the flow rates. The performance of oil production process based on the group control criteria is investigated and compared for various cases.

Findings

The proposed algorithm for group control of production wells is a non-optimization iterative scheme converging within a few number of iterations. The numerical results of many computer runs indicate that the nominal power of the production wells, in general, is the best group control criterion for the proposed algorithm. The production well group control with a proper criterion can generally improve the oil recovery process at negligible computational costs when compared with individual control of production wells.

Research/limitations/implications

Although the group control algorithm is implemented for both production and injection wells in the developed simulator, the numerical algorithm is here described only for production wells to provide more details.

Practical/implications

The proposed algorithm can be coupled with any well model providing the fluid flow rates and can be efficiently used for group control of production wells. In addition, the calculated flow rates of the production wells based on the group control algorithm can be used as candidate solutions for the optimizer in the simulation-optimization models. It may reduce the total number of iterations and consequently the computational cost of the simulation-optimization models for the well control problem.

Originality/value

A complete and detailed description of ingredients of an efficient well group control algorithm for the hydrocarbon reservoir is presented. Five group control criteria are extracted from the physical, geometrical and operating conditions of the wells/reservoir. These are the target rate, weighted potential, ultimate rate and introduced nominal power of the production wells. The performance of the group control of production wells with different group control criteria is compared in three different oil production scenarios from a black-oil and highly heterogeneous reservoir.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2008

Carlos Alberto Ferreira Fernandes

The aim of this paper is to develop simulation tools for the analysis of modified structures of distributed feedback (DFB) laser diodes adequate for single longitudinal mode (SLM…

Abstract

Purpose

The aim of this paper is to develop simulation tools for the analysis of modified structures of distributed feedback (DFB) laser diodes adequate for single longitudinal mode (SLM) operation.

Design/methodology/approach

The paper uses matricial techniques: the transfer matrix method (TMM). When compared to the eigenvalue approach, the matricial techniques are more general and flexible and hence are especially adequate to deal with the analysis and structural design of DFB laser diodes. In this work, the author makes a general description of the TMM, enhancing its importance with some applications by considering the threshold and above‐threshold analysis of a modified DFB laser structure.

Findings

The increasing demands on laser performance, mainly in the area of optical communication systems, have lead to the fabrication of more‐and‐more complex structures. In viewing the development of the associated technology, the importance of the simulation tools revealed of crucial importance.

Originality/value

The simulation model used in this work has been described in other works of the author. In the present analysis a general description of the TMM was implemented, summarizing the results of previous studies for the threshold and above‐threshold regimes of modified DFB laser structures specially designed to show SLM operation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 2016

Chih-Ta Yen and Guan-Jie Huang

The purpose of this paper is to propose a new optical steganography framework that can be applied to public optical binary phase-shift keying (BPSK) systems by transmitting a…

Abstract

Purpose

The purpose of this paper is to propose a new optical steganography framework that can be applied to public optical binary phase-shift keying (BPSK) systems by transmitting a stealth spectrum-amplitude-coded optical code-division multiple-access signal through a BPSK link.

Design/methodology/approach

By using high-dispersion elements, the stealth data pulses temporally stretch and the amplitude of the signal decreases after stretching. Thus, the signal can be hidden underneath the public signal and system noise. At the receiver end, a polarizer is used for removing the public BPSK signal and the stealth signal is successfully recovered by a balanced detector.

Findings

In a simulation, the bit-error rate (BER) performance improved when the stealth power increased.

Research limitations/implications

The BER performance worsens when the noise power become large. Future work will consider increasing the system performance during high-noise power situation.

Practical implications

By properly adjusting the power of the amplified spontaneous emission noise, the stealth signal can be hidden well in the public channel while producing minimal influence on the public BPSK signal.

Originality/value

In conclusion, the proposed optical steganography framework makes it more difficult for eavesdroppers to detect and intercept the hidden stealth channel under public transmission, even when using a dispersion compensation scheme.

Details

Engineering Computations, vol. 33 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Mohamed El-Amin, Jisheng Kou and Shuyu Sun

This paper aims to introduce modeling, numerical simulation and convergence analysis of the problem of nanoparticles’ transport carried by a two-phase flow in a porous medium. The…

Abstract

Purpose

This paper aims to introduce modeling, numerical simulation and convergence analysis of the problem of nanoparticles’ transport carried by a two-phase flow in a porous medium. The model consists of equations of pressure, saturation, nanoparticles’ concentration, deposited nanoparticles’ concentration on the pore-walls and entrapped nanoparticles concentration in pore-throats.

Design/methodology/approach

A nonlinear iterative IMPES-IMC (IMplicit Pressure Explicit Saturation–IMplicit Concentration) scheme is used to solve the problem under consideration. The governing equations are discretized using the cell-centered finite difference (CCFD) method. The pressure and saturation equations are coupled to calculate the pressure, and then the saturation is updated explicitly. Therefore, the equations of nanoparticles concentration, the deposited nanoparticles concentration on the pore walls and the entrapped nanoparticles concentration in pore throats are computed implicitly. Then, the porosity and the permeability variations are updated.

Findings

Three lemmas and one theorem for the convergence of the iterative method under the natural conditions and some continuity and boundedness assumptions were stated and proved. The theorem is proved by induction states that after a number of iterations, the sequences of the dependent variables such as saturation and concentrations approach solutions on the next time step. Moreover, two numerical examples are introduced with convergence test in terms of Courant–Friedrichs–Lewy (CFL) condition and a relaxation factor. Dependent variables such as pressure, saturation, concentration, deposited concentrations, porosity and permeability are plotted as contours in graphs, whereas the error estimations are presented in a table for different values of the number of time steps, number of iterations and mesh size.

Research limitations/implications

The domain of the computations is relatively small; however, it is straightforward to extend this method to the oil reservoir (large) domain by keeping similar definitions of CFL number and other physical parameters.

Originality/value

The model of the problem under consideration has not been studied before. Also, both solution technique and convergence analysis have not been used before with this model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 January 2020

Ramakrishna Guttula and Venkateswara Rao Nandanavanam

Microstrip patch antenna is generally used for several communication purposes particularly in the military and civilian applications. Even though several techniques have been made…

Abstract

Purpose

Microstrip patch antenna is generally used for several communication purposes particularly in the military and civilian applications. Even though several techniques have been made numerous achievements in several fields, some systems require additional improvements to meet few challenges. Yet, they require application-specific improvement for optimally designing microstrip patch antenna. The paper aims to discuss these issues.

Design/methodology/approach

This paper intends to adopt an advanced meta-heuristic search algorithm called as grey wolf optimization (GWO), which is said to be inspired by the hunting behaviour of grey wolves, for the design of patch antenna parameters. The searching for the optimal design of the antenna is paced up using the opposition-based solution search. Moreover, the proposed model derives a nonlinear objective model to aid the design of the solution space of antenna parameters. After executing the simulation model, this paper compares the performance of the proposed GWO-based microstrip patch antenna with several conventional models.

Findings

The gain of the proposed model is 27.05 per cent better than WOAD, 2.07 per cent better than AAD, 15.80 per cent better than GAD, 17.49 per cent better than PSAD and 3.77 per cent better than GWAD model. Thus, it has proved that the proposed antenna model has attained high gain, leads to cause superior performance.

Originality/value

This paper presents a technique for designing the microstrip patch antenna, using the proposed GWO algorithm. This is the first work utilizes GWO-based optimization for microstrip patch antenna.

Details

Data Technologies and Applications, vol. 54 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 15 February 2022

Guilin Wang, Fan Sun, Runqiu Wang, Liang Zhang, Tianci Cao and Boyi Li

The material point method (MPM)is a particle-based numerical method suitable for solid–liquid simulation and large deformation problems. However, MPM is generally used in solid…

274

Abstract

Purpose

The material point method (MPM)is a particle-based numerical method suitable for solid–liquid simulation and large deformation problems. However, MPM is generally used in solid deformation at present, to develop a multi-physics coupling MPM; the purpose of this study is to extend the MPM to simulate the heat and fluid flow and address the thermal-hydrological (TH) coupling problems.

Design/methodology/approach

The porous medium was discretized into two sets of Lagrangian points, and the motion of fluid points follows the Darcy’s law. Two sets of heat transport equations were established for the heat conduction and heat exchange in the pore fluid and solid skeleton. Fractures were considered by adding the porosity gradient term in the governing equations; also a transition function was introduced to smoothen the fracture boundary.

Findings

Four cases of heat and fluid flow in porous medium and fractures were presented to verify the feasibility of the proposed method. And the effects of fractures on heat and fluid flow were investigated. Additionally, a case of geothermal extraction was solved and the importance of the interstitial convective heat transfer coefficient was analyzed.

Originality/value

The proposed method extends the conventional MPM, using two sets of material points and two sets of heat transport equations to simulate the heat and fluid flow and address the TH coupling problems, which can be applied in both porous medium and fractures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2021

Pascalin Tiam Kapen, Cédric Gervais Njingang Ketchate, Didier Fokwa and Ghislain Tchuen

For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified…

Abstract

Purpose

For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified Orr–Sommerfeld type which is solved numerically by the spectral collocation method based on Chebyshev polynomials. Unlike previous studies, blood is considered as a non-Newtonian fluid. The effects of various parameters such as volume fraction of nanoparticles, Casson parameter, Darcy number, Hartmann number on flow stability were examined and presented. This paper aims to investigate a linear stability analysis of non-Newtonian blood flow with magnetic nanoparticles with an application to controlled drug delivery.

Design/methodology/approach

Targeted delivery of therapeutic agents such as stem cells and drugs using magnetic nanoparticles with the help of external magnetic fields is an emerging treatment modality for many diseases. To this end, controlling the movement of nanoparticles in the human body is of great importance. This study investigates controlled drug delivery by using magnetic nanoparticles in a porous artery under the influence of a magnetic field.

Findings

It was found the following: the Casson parameter affects the stability of the flow by amplifying the amplitude of the disturbance which reflects its destabilizing effect. It emerges from this study that the taking into account of the non-Newtonian character is essential in the modeling of such a system, and that the results can be very different from those obtained by supposing that the blood is a Newtonian fluid. The presence of iron oxide nanoparticles in the blood increases the inertia of the fluid, which dampens the disturbances. The Strouhal number has a stabilizing effect on the flow which makes it possible to say that the oscillating circulation mechanisms dampen the disturbances. The Darcy number affects the stability of the flow and has a stabilizing effect, which makes it possible to increase the contact surface between the nanoparticles and the fluid allowing very high heat transfer rates to be obtained. It also emerges from this study that the presence of the porosity prevents the sedimentation of the nanoparticles. By studying the effect of the magnetic field on the stability of the flow, it is observed that the Hartmann number keeps the flow completely stable. This allows saying that the magnetic field makes the dissipations very important because the kinetic energy of the electrically conductive ferrofluid is absorbed by the Lorentz force.

Originality/value

The originality of this paper resides on the application of the linear stability analysis for controlled drug delivery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

Mehdi Mosharaf Dehkordi, Mehrdad T. Manzari, H. Ghafouri and R. Fatehi

– The purpose of this paper is to present a detailed algorithm for simulating three-dimensional hydrocarbon reservoirs using the blackoil model.

Abstract

Purpose

The purpose of this paper is to present a detailed algorithm for simulating three-dimensional hydrocarbon reservoirs using the blackoil model.

Design/methodology/approach

The numerical algorithm uses a cell-centred structured grid finite volume method. The blackoil formulation is written in a way that an Implicit Pressure Explicit Saturation approach can be used. The flow field is obtained by solving a general gas pressure equation derived by manipulating the governing equations. All possible variations of the pressure equation coefficients are given for different reservoir conditions. Key computational details including treatment of non-linear terms, expansion of accumulation terms, transitions from under-saturated to saturated states and vice versa, high gas injection rates, evolution of gas in the oil production wells and adaptive time-stepping procedures are elaborated.

Findings

It was shown that using a proper linearization method, less computational difficulties occur especially when free gas is released with high rates. The computational performance of the proposed algorithm is assessed by solving the first SPE comparative study problem with both constant and variable bubble point conditions.

Research limitations/implications

While discretization is performed and implemented for unstructured grids, the numerical results are presented only for structured grids, as expected, the accuracy of numerical results are best for structured grids. Also, the reservoir is assumed to be non-fractured.

Practical implications

The proposed algorithm can be efficiently used for simulating a wide range of practical problems wherever blackoil model is applicable.

Originality/value

A complete and detailed description of ingredients of an efficient finite volume-based algorithm for simulating blackoil flows in hydrocarbon reservoirs is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 61